Login to your account

Username *
Password *
Remember Me

Blog With Right Sidebar

Shortening treatment for tuberculosis--to basics.

Related Articles

With approximately 8 million incident cases and 1.3 million deaths each year, increasing drug resistance, and exacerbating coexisting conditions such as the human immunodeficiency virus–acquired immunodeficiency syndrome and diabetes, tuberculosis continues to pose a massive threat to global health. In the absence of a vaccine to provide long-term protection, control of drug-susceptible tuberculosis is largely dependent on a standard 6-month chemotherapy regimen that has been in use for more than three decades. Any experimental therapy designed to modify this short-course regimen — which comprises a 2-month intensive phase with four drugs (rifampin, isoniazid, pyrazinamide, and ethambutol) followed by a 4-month continuation phase with two drugs (isoniazid and rifampin) — must not increase the rate of recurrence due to relapse.

Where the aim is to reduce the duration of treatment — a critical transformation to improve patient adherence and reduce costs — the challenge is significant: demonstration of noninferiority with fewer months of therapy. Three trials reported in this issue of the Journal offer a sobering reminder of the enormity of this task, while providing some insight into the factors that are likely to determine the success of new, treatment-shortening regimens.

Cell-free circulating tumor DNA in plasma/serum of non-small cell lung cancer.

Related Articles

92951Non-small cell lung cancer (NSCLC) is the common type of lung cancer, which is the leading cause of cancer death throughout the world. Most patients were diagnosed too late for curative treatment. So, it is necessary to develop a minimal invasive method to identify NSCLC at an early stage. In recent years, cell-free circulating tumor DNA (ctDNA) has attracted increasing attention as a potential tumor marker for its minimal invasive, convenient, and easily accepted properties.

The amount of ctDNA in plasma or serum was significantly higher in NSCLC patients than that in healthy controls or patients with benign diseases. Furthermore, many studies have proved an association among tumor stage, tumor grade, lymph node involvement, the number of metastatic sites, tumor response, survival outcome, and the ctDNA levels. Many genetic changes, such as gene mutation, loss of heterozygosity, microsatellite instability, and gene methylation were also found in ctDNA in NSCLC patients.

These findings demonstrated that the ctDNA could serve as a viable tool to monitor NSCLC and prompted us to find more sensitive and specific biomarkers for clinical practice, especially monitor these cases with at least one known gene abnormality. Here, we reviewed the evidence of ctDNA in NSCLC and consider possible future applications in patient management.

A multicenter pilot study examining the role of circulating tumor cells as a blood-based tumor marker in patients with extensive small-cell lung cancer.

Related Articles

Small-cell lung cancer (SCLC), a variant of lung cancer marked by early metastases, accounts for 13% of all lung cancers diagnosed in US. Despite high response rates to treatment, it is an aggressive disease with a median survival of 9-11 months for patients with extensive stage (EX-SCLC). Detection of circulating tumor cells (CTCs) is a novel laboratory technique currently in use to determine response to therapy and to predict prognosis in breast, colorectal, and prostate cancer. We initiated a pilot study to analyze the role of CTCs as a biomarker of response and relapse in patients with EX-SCLC.

METHODS: We collected blood samples from chemotherapy naïve patients with EX-SCLC prior to initiation of therapy, after completion of systemic therapy, and follow-up every 6-8 weeks and at relapse. The number of CTCs was determined using the cell search system in a central laboratory. The study was conducted in four different sites, and it was reviewed and approved by respective research review committees and IRBs.

RESULTS: We enrolled 26 patients with EX-SCLC, 1 was excluded due to ineligibility, all were treated with platinum and etoposide. We observed partial response in 16 patients, stable disease in 3 patients, 1 patient with disease progression, and 6 patients were not assessed (5 deceased, 1 not available). The overall median number of CTCs in 24 patients measured at baseline and post-tx was 75 (range 0-3430) and 2 (range 0-526), respectively. A significant reduction in CTCs from baseline to post-treatment was identified for 15 subjects; the median reduction was 97.4% (range -100 to +100%, p < 0.001). Higher baseline CTCs and percentage change in post-treatment CTCs were associated with decreased survival.

CONCLUSION: We demonstrated that it is feasible to detect CTCs in EX-SCLC. If validated in other prospective studies, CTCs could be a useful biomarker in the management of EX-SCLC by predicting patients' clinical responses to therapy.

State of the art in the treatment of systemic vasculitides.

Related Articles

State of the art in the treatment of systemic vasculitides.

Front Immunol. 2014;5:471

Authors: Luqmani RA

Abstract
Anti-neutrophil cytoplasm antibodies (ANCA) are associated with small vessel vasculitides (AASV) affecting the lungs and kidneys. Structured clinical assessment using the Birmingham Vasculitis Activity Score and Vasculitis Damage Index should form the basis of a treatment plan and be used to document progress, including relapse. Severe disease with organ or life threatening manifestations needs cyclophosphamide or rituximab, plus high dose glucocorticoids, followed by lower dose steroid plus azathioprine, or methotrexate. Additional plasmapheresis is effective for very severe disease, reducing dialysis dependence from 60 to 40% in the first year, but with no effect on mortality or long-term renal function, probably due to established renal damage. In milder forms of ANCA-associated vasculitis, methotrexate, leflunomide, or mycophenolate mofetil are effective. Mortality depends on initial severity: 25% in patients with renal failure or severe lung hemorrhage; 6% for generalized non-life threatening AASV but rising to 30-40% at 5 years. Mortality from GPA is four times higher than the background population. Early deaths are due to active vasculitis and infection. Subsequent deaths are more often due to cardiovascular events, infection, and cancer. We need to improve the long-term outcome, by controlling disease activity but also preventing damage and drug toxicity. By contrast, in large vessel vasculitis where mortality is much less but morbidity potentially greater, such as giant cell arteritis (GCA) and Takayasu arteritis, therapeutic options are limited. High dose glucocorticoid results in significant toxicity in over 80%. Advances in understanding the biology of the vasculitides are improving therapies. Novel, mechanism based therapies such as rituximab in AASV, mepolizumab in eosinophilic granulomatosis with polyangiitis, and tocilizumab in GCA, but the lack of reliable biomarkers remains a challenge to progress in these chronic relapsing diseases.

PMID: 25352843 [PubMed]

Airway Basal Cells: The "Smoking Gun" of COPD.

Related Articles

Airway Basal Cells: The "Smoking Gun" of COPD.

Am J Respir Crit Care Med. 2014 Oct 29;

Authors: Crystal RG

Abstract
The earliest abnormality in the lung associated with smoking is hyperplasia of airway basal cells, the stem/progenitor cells of the ciliated and secretory cells that are central to pulmonary host defense. Using cell biology and 'omics technologies to assess basal cells isolated from bronchoscopic brushings of nonsmokers, smokers and smokers with COPD, compelling evidence has been provided in support of the concept that airway basal cells are central to the pathogenesis of smoking-associated lung diseases. When confronted by the chronic stress of smoking, airway basal cells become disorderly, regress to a more primitive state, behave as dictated by their inheritance, are susceptible to acquired changes in their genome, lose the capacity to regenerate the epithelium, are responsible for the major changes in the airway that characterize COPD, and with persistent stress, can undergo malignant transformation. Together, these observations lead to the conclusion that accelerated loss of lung function in susceptible individuals begins with disordered airway basal cell biology, i.e., that airway basal cells are the "smoking gun" of COPD, a potential target for the development of therapies to prevent the smoking-related lung disorders.

PMID: 25354273 [PubMed - as supplied by publisher]

Search