Login to your account

Username *
Password *
Remember Me

Blog With Right Sidebar

Bottom-up implementation of disease-management programmes: results of a multisite comparison.

To evaluate the implementation of three regional disease-management programmes on chronic obstructive pulmonary disease (COPD) based on bottlenecks experienced in professional practice.

Methods The authors performed a multisite comparison of three Dutch regional disease-management programmes combining patient-related, professional-directed and organisational interventions. Process (Assessing Chronic Illness Care survey) and outcome (disease specific quality of life (clinical COPD questionnaire (CCQ); chronic respiratory questionnaire (CRQ)), Medical Research Council dyspnoea and patients' experiences) data were collected for 370 COPD patients and their care providers.

Results Bottlenecks in region A were mostly related to patient involvement, in region B to organisational issues and in region C to both. Selected interventions related to identified bottlenecks were implemented in all programmes, except for patient-related interventions in programme A. Within programmes, significant improvements were found on dyspnoea and patients' experiences with practice nurses. Outcomes on quality of life differed between programmes: programme A did not show any significant improvements; programme B did show any significant improvements on CCQ total (p<0.001), functional (p=0.011) and symptom (p<0.001), CRQ fatigue (p<0.001) and emotional scales (p<0.001); in programme C, CCQ symptom (p<0.001) improved significantly, whereas CCQ mental score (p<0.001) deteriorated significantly. Regression analyses showed that programmes with better implementation of selected interventions resulted in relatively larger improvements in quality of life (CCQ).

Conclusions Bottom-up implementation of COPD disease-management programmes is a feasible approach, which in multiple settings leads to significant improvements in outcomes of care. Programmes with a better fit between implemented interventions and bottlenecks showed more positive changes in outcomes.

Vitamin D-binding protein contributes to COPD by activation of alveolar macrophages.

Vitamin D-binding protein (DBP) genetic polymorphisms have been associated with chronic obstructive pulmonary disease (COPD). DBP has an indirect role in macrophage activation; thus it was hypothesised that DBP is present in the airway and contributes to lung disease by this mechanism.

Methods 471 PiZZ subjects with α1-antitrypsin deficiency (AATD) were genotyped for tag single nucleotide polymorphisms (SNPs) covering the DBP gene (GC), together with known functional variants, prior to seeking association with COPD phenotypes. 140 subjects with usual COPD and 480 controls were available for replication. Vitamin D and DBP levels were measured by tandem mass spectrometry and ELISA, respectively, in serum and DBP in the sol phase of sputum in a subset of 60 patients. Concentrations were related to phenotype and to alveolar macrophage activation.

Results rs2070741 was associated with airway bacterial colonisation (p=0.04) and bronchiectasis (p=0.01), as was rs7041 (p=0.03) which also influenced vitamin D concentrations (p=0.01). The GC2 variant predisposed to bronchiectasis in AATD (p=0.04) and protected against COPD (p=0.05); the latter association was replicated in usual COPD versus controls (p=0.04). Circulating DBP related inversely to forced expiratory volume in 1&emsp14;s (FEV(1)) (p=0.02), in direct contrast to vitamin D, where deficiency related to low FEV(1) (p=0.04). Sol DBP related directly to alveolar macrophage activation (p=0.004).

Conclusions The genetic association of DBP with COPD may be mediated by effects on macrophage activation, since DBP relates to FEV(1), and affects macrophage activation. Vitamin D effects may be independent of this, relating more strongly to innate immunity.

Patterns of Inflammatory Responses in Large and Small Airways in Smokers with and without Chronic Obstructive Pulmonary Disease.

Chronic obstructive pulmonary disease (COPD) is characterised by progressive and irreversible airway obstruction. Smoking causes persistent inflammation in lung tissue. However, differences in inflammatory responses between the large and small airways have not been systematically explored among smokers with and without COPD.

Objectives: The aim of our research was to characterise the expression and localisation of NF-κBp65 and histone deacetylase 2 (HDAC2) as well as inflammatory cell (macrophages, lymphocytes, neutrophils) distribution in large and small airways, in nonsmokers and in smokers with and without COPD. Methods: Nineteen nonsmokers, 20 smokers with normal lung ventilation function and 20 smokers with moderate COPD, undergoing lung resection for a solitary peripheral carcinoma, were enrolled in the study. Immunohistochemical methods were used to evaluate NF-κBp65 and HDAC2 expression and identify inflammatory cells in airways.

Results: COPD patients had increased NF-κBp65 expression compared to nonsmokers and smokers without COPD, in both large and small airways, which corresponded to increased numbers of macrophages, CD8+ T lymphocytes and neutrophils. COPD patients had more macrophages in large compared to small airways and more CD8+ T lymphocytes and neutrophils in small compared to large airways. HDAC2 expression was significantly downregulated in smokers with COPD in small compared to large airways.

Conclusions: Our findings indicate a nonuniform distribution of inflammatory cells throughout the bronchial tree. However, in both smokers with and without COPD, similar patterns of inflammatory processes occur in both large and small airways. The difference between smokers with and without COPD is only quantitative.

High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial.

Vitamin D was used to treat tuberculosis in the pre-antibiotic era, and its metabolites induce antimycobacterial immunity in vitro. Clinical trials investigating the effect of adjunctive vitamin D on sputum culture conversion are absent.

METHODS: We undertook a multicentre randomised controlled trial of adjunctive vitamin D in adults with sputum smear-positive pulmonary tuberculosis in London, UK. 146 patients were allocated to receive 2·5 mg vitamin D(3) or placebo at baseline and 14, 28, and 42 days after starting standard tuberculosis treatment. The primary endpoint was time from initiation of antimicrobial treatment to sputum culture conversion. Patients were genotyped for TaqI and FokI polymorphisms of the vitamin D receptor, and interaction analyses were done to assess the influence of the vitamin D receptor genotype on response to vitamin D(3). This trial is registered with ClinicalTrials.gov number NCT00419068.

FINDINGS: 126 patients were included in the primary efficacy analysis (62 assigned to intervention, 64 assigned to placebo). Median time to sputum culture conversion was 36·0 days in the intervention group and 43·5 days in the placebo group (adjusted hazard ratio 1·39, 95% CI 0·90-2·16; p=0.14). TaqI genotype modified the effect of vitamin D supplementation on time to sputum culture conversion (p(interaction)=0·03), with enhanced response seen only in patients with the tt genotype (8·09, 95% CI 1·36-48·01; p=0·02). FokI genotype did not modify the effect of vitamin D supplementation (p(interaction)=0·85). Mean serum 25-hydroxyvitamin D concentration at 56 days was 101·4 nmol/L in the intervention group and 22·8 nmol/L in the placebo group (95% CI for difference 68·6-88·2; p<0·0001).

INTERPRETATION: Administration of four doses of 2·5 mg vitamin D(3) increased serum 25-hydroxyvitamin D concentrations in patients receiving intensive-phase treatment for pulmonary tuberculosis. Vitamin D did not significantly affect time to sputum culture conversion in the whole study population, but it did significantly hasten sputum culture conversion in participants with the tt genotype of the TaqI vitamin D receptor polymorphism.

Impact of parenchymal tuberculosis sequelae on mediastinal lymph node staging in patients with lung cancer.

Because tuberculous (TB) involvement of mediastinal lymph nodes (LN) could cause false positive results in nodal staging of lung cancer, we examined the accuracy of nodal staging in lung cancer patients with radiographic sequelae of healed TB.

A total of 54 lung cancer patients with radiographic TB sequelae in the lung parenchyma ipsilateral to the resected lung, who had undergone at least ipsilateral 4- and 7-lymph node dissection after both chest computed tomography (CT) and fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT were included for the analysis.

The median age of 54 subjects was 66 yr and 48 were males. Calcified nodules and fibrotic changes were the most common forms of healed parenchymal pulmonary TB. Enlarged mediastinal lymph nodes (short diameter > 1 cm) were identified in 21 patients and positive mediastinal lymph nodes were identified using FDG-PET/CT in 19 patients. The overall sensitivity and specificity for mediastinal node metastasis were 60.0% and 69.2% with CT and 46.7% and 69.2% with FDG-PET/CT, respectively.

In conclusion, the accuracy of nodal staging using CT or FDG-PET/CT might be low in lung cancer patients with parenchymal TB sequelae, because of inactive TB lymph nodes without viable TB bacilli.

Search