Before the arrival of modern pharmacotherapy, drug hypersensitivity reactions were virtually unknown. Toxicity from the many plant-, animal- and inorganic material-derived remedies must have been much more common.
One famous example is the intoxications from mercury, which has been used in many ailments, but particularly for the treatment of syphilis. It was only in the 19th century when more and more active principles from e.g. plants were identified, and when the observations of skin reactions became more prevalent. In 1877, Heinrich Köbner used for the first time the term 'drug exanthema' (Arznei-Exanthem). Since then, many different types of exanthemas from the mild macular-papular forms to the severe life-threatening bullous exanthemas such as toxic epidermal necrolysis have been observed from numerous drugs. The systematic investigation of severe drug reactions has only started in the second half of the 20th century, parallel to the increasing knowledge in immunology.
Drug hypersensitivity reactions still remain one of the most challenging problems in allergology due to their manifold clinical manifestations and their very diverse pathophysiology. The introduction of new drugs and in turn the emergence of new hypersensitivity reactions will remain a challenge in the future. © 2014 S. Karger AG, Basel.
The earliest known evidence of peanut farming dates back 7,600 years. With a prevalence of roughly 1%, peanut allergy is a diagnostic and treatment challenge, but is also a very good model for studying all aspects of food allergy, including its molecular basis and pathomechanisms. Therefore, the very starting point for elucidating all these aspects is the identification of peanut allergens with subsequent clearing of their structure and their preparation as pure recombinant and/or natural allergens.
This is the basis for in vitro diagnostic tests as well as the development of immunotherapeutic drugs. With regard to class I food allergy, peanut allergy affects by far the largest group of patients. In peanuts, 12 allergens have been identified and their molecular characteristics are described herein. Ara h 1, Ara h 3.01 and Ara h 3.02 (the former Ara h 4) belong to the cupin superfamily. The conglutins Ara h 2, Ara h 6 and Ara h 7, and the non-specific lipid transfer protein Ara h 9 belong to the prolamin superfamily. Ara h 5 (profilin) and Ara h 8 (Bet v 1-homologous protein) cause class II food allergies and are associated with inhalation allergy to pollen via the sequential and/or conformational similarity of molecules. Two peanut oleosins are listed as Ara h 10 and Ara h 11 and two defensins as Ara h 12 and Ara h 13 by the WHO/IUIS Allergen Nomenclature Subcommittee.
The effect of the above-specified allergens has to be considered in the context of their matrix, which is influenced by processing factors and the individual's immune system. © 2014 S. Karger AG, Basel.
Compared with other population groups, the way of life of farmers can be viewed as being similar to that of our ancestors. The settled continuation of generations within certain critical geographical and environmental conditions requires a special local network of knowledge and experience.
The immune system provides protection against microbes and their toxins. Each strong reaction impedes an active adaptation. Allergy is therefore a harmful intolerance and represents one of many different paradoxes.
The aim of this chapter is to demonstrate some of the interactions of tolerance and adaptation from a historical background. © 2014 S. Karger AG, Basel.
![]() |
Related Articles |
Eur Respir J. 2014 Jun 12;
Authors: Bousquet J, Addis A, Adcock I, Agache I, Agusti A, Alonso A, Annesi-Maesano I, Anto JM, Bachert C, Baena-Cagnani CE, Bai C, Baigenzhin A, Barbara C, Barnes PJ, Bateman ED, Beck L, Bedbrook A, Bel EH, Benezet O, Bennoor KS, Benson M, Bernabeu-Wittel M, Bewick M, Bindslev-Jensen C, Blain H, Blasi F, Bonini M, Bonini S, Boulet LP, Bourdin A, Bourret R, Bousquet PJ, Brightling CE, Briggs A, Brozek J, Buhl R, Bush A, Caimmi D, Calderon M, Calverley P, Camargos PA, Camuzat T, Canonica GW, Carlsen KH, Casale TB, Cazzola M, Cepeda Sarabia AM, Cesario A, Chen YZ, Chkhartishvili E, Chavannes NH, Chiron R, Chuchalin A, Chung KF, Cox L, Crooks G, Crooks MG, Cruz AA, Custovic A, Dahl R, Dahlen SE, De Blay F, Dedeu T, Deleanu D, Demoly P, Devillier P, Didier A, Dinh-Xuan AT, Djukanovic R, Dokic D, Douagui H, Dubakiene R, Eglin S, Elliot F, Emuzyte R, Fabbri L, Fink Wagner A, Fletcher M, Fokkens WJ, Fonseca J, Franco A, Frith P, Furber A, Gaga M, Garcés J, Garcia-Aymerich J, Gamkrelidze A, Gonzales-Diaz S, Gouzi F, Guzmán MA, Haahtela T, Harrison D, Hayot M, Heaney LG, Heinrich J, Hellings PW, Hooper J, Humbert M, Hyland M, Iaccarino G, Jakovenko D, Jardim JR, Jeandel C, Jenkins C, Johnston SL, Jonquet O, Joos G, Jung KS, Kalayci O, Karunanithi S, Keil T, Khaltaev N, Kolek V, Kowalski ML, Kull I, Kuna P, Kvedariene V, Le LT, Lodrup Carlsen KC, Louis R, MacNee W, Mair A, Majer I, Manning P, de Manuel Keenoy E, Masjedi MR, Melen E, Melo-Gomes E, Menzies-Gow A, Mercier G, Mercier J, Michel JP, Miculinic N, Mihaltan F, Milenkovic B, Molimard M, Momas I, Montilla-Santana A, Morais-Almeida M, Morgan M, N'Diaye M, Nafti S, Nekam K, Neou A, Nicod L, O'Hehir R, Ohta K, Paggiaro P, Palkonen S, Palmer S, Papadopoulos NG, Papi A, Passalacqua G, Pavord I, Pigearias B, Plavec D, Postma DS, Price D, Rabe KF, Radier Pontal F, Redon J, Rennard S, Roberts J, Robine JM, Roca J, Roche N, Rodenas F, Roggeri A, Rolland C, Rosado-Pinto J, Ryan D, Samolinski B, Sanchez-Borges M, Schünemann HJ, Sheikh A, Shields M, Siafakas N, Sibille Y, Similowski T, Small I, Sola-Morales O, Sooronbaev T, Stelmach R, Sterk PJ, Stiris T, Sud P, Tellier V, To T, Todo-Bom A, Triggiani M, Valenta R, Valero AL, Valiulis A, Valovirta E, Van Ganse E, Vandenplas O, Vasankari T, Vestbo J, Vezzani G, Viegi G, Visier L, Vogelmeier C, Vontetsianos T, Wagstaff R, Wahn U, Wallaert B, Whalley B, Wickman M, Williams DM, Wilson N, Yawn BP, Yiallouros PK, Yorgancioglu A, Yusuf OM, Zar HJ, Zhong N, Zidarn M, Zuberbier T