Login to your account

Username *
Password *
Remember Me

Blog With Right Sidebar

EAACI Molecular Allergology User's Guide.

Related Articles

EAACI Molecular Allergology User's Guide.

Pediatr Allergy Immunol. 2016 May;27 Suppl 23:1-250

Authors: Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, Aalberse RC, Agache I, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilò MB, Blank S, Bohle B, Bosshard PP, Breiteneder H, Brough HA, Caraballo L, Caubet JC, Crameri R, Davies JM, Douladiris N, Ebisawa M, EIgenmann PA, Fernandez-Rivas M, Ferreira F, Gadermaier G, Glatz M, Hamilton RG, Hawranek T, Hellings P, Hoffmann-Sommergruber K, Jakob T, Jappe U, Jutel M, Kamath SD, Knol EF, Korosec P, Kuehn A, Lack G, Lopata AL, Mäkelä M, Morisset M, Niederberger V, Nowak-Węgrzyn AH, Papadopoulos NG, Pastorello EA, Pauli G, Platts-Mills T, Posa D, Poulsen LK, Raulf M, Sastre J, Scala E, Schmid JM, Schmid-Grendelmeier P, van Hage M, van Ree R, Vieths S, Weber R, Wickman M, Muraro A, Ollert M

Abstract
The availability of allergen molecules ('components') from several protein families has advanced our understanding of immunoglobulin E (IgE)-mediated responses and enabled 'component-resolved diagnosis' (CRD). The European Academy of Allergy and Clinical Immunology (EAACI) Molecular Allergology User's Guide (MAUG) provides comprehensive information on important allergens and describes the diagnostic options using CRD. Part A of the EAACI MAUG introduces allergen molecules, families, composition of extracts, databases, and diagnostic IgE, skin, and basophil tests. Singleplex and multiplex IgE assays with components improve both sensitivity for low-abundance allergens and analytical specificity; IgE to individual allergens can yield information on clinical risks and distinguish cross-reactivity from true primary sensitization. Part B discusses the clinical and molecular aspects of IgE-mediated allergies to foods (including nuts, seeds, legumes, fruits, vegetables, cereal grains, milk, egg, meat, fish, and shellfish), inhalants (pollen, mold spores, mites, and animal dander), and Hymenoptera venom. Diagnostic algorithms and short case histories provide useful information for the clinical workup of allergic individuals targeted for CRD. Part C covers protein families containing ubiquitous, highly cross-reactive panallergens from plant (lipid transfer proteins, polcalcins, PR-10, profilins) and animal sources (lipocalins, parvalbumins, serum albumins, tropomyosins) and explains their diagnostic and clinical utility. Part D lists 100 important allergen molecules. In conclusion, IgE-mediated reactions and allergic diseases, including allergic rhinoconjunctivitis, asthma, food reactions, and insect sting reactions, are discussed from a novel molecular perspective. The EAACI MAUG documents the rapid progression of molecular allergology from basic research to its integration into clinical practice, a quantum leap in the management of allergic patients.

PMID: 27288833 [PubMed - in process]

Efficacy of inhaled medications in asthma and COPD related to disease severity.

Related Articles

Efficacy of inhaled medications in asthma and COPD related to disease severity.

Expert Opin Drug Deliv. 2016 Jun 13;

Authors: Hajian B, Backer J, Vos W, Aerts J, Cluckers J, De Backer W

Abstract
INTRODUCTION: The administration of medication by inhalation has become the most important route in treating airway diseases. The efficacy of this route depends on several factors like correct inhalation techniques, compliance and the size of the particles. The flow properties and internal flow distribution contribute to the deposition pattern.
AREAS COVERED: What has been less well studied is the effect of the internal flow distribution. We know from recent studies that using systemic anti-inflammatory compounds that open up the distal airways redistributes flow internally and enhances the deposition of inhaled particles to the active site of bronchoconstriction or airway inflammation. We discuss this in more detail in this paper, and also make reference to the use of functional respiratory imaging (FRI) that allows for the description of this flow pattern starting from chest CT followed by post processing with segmentation software and the application of fluid dynamics.
EXPERT OPINION: The method that was previously validated does show the importance of redistribution of flow in the final clinical results that could be obtained with inhaled medication, especially in more severe obstructive airway diseases. Based on these insights and novel diagnostic tools, patients in end stage respiratory failure would benefit from a personalized approach with inhaled medication.

PMID: 27292454 [PubMed - as supplied by publisher]

Mycoplasma pneumoniae and Streptococcus pneumoniae caused different microbial structure and correlation network in lung microbiota.

Related Articles

Mycoplasma pneumoniae and Streptococcus pneumoniae caused different microbial structure and correlation network in lung microbiota.

J Thorac Dis. 2016 Jun;8(6):1316-22

Authors: Wang H, Dai W, Qiu C, Li S, Wang W, Xu J, Li Z, Wang H, Li Y, Yang Z, Feng X, Zhou Q, Han L, Li Y, Zheng Y

Abstract
Pneumonia is one of the most serious diseases for children, with which lung microbiota are proved to be associated. We performed 16S rDNA analysis on broncho-alveolar lavage fluid (BALF) for 32 children with tracheomalacia (C group), pneumonia infected with Streptococcus pneumoniae (S. pneumoniae) (D1 group) or Mycoplasma pneumoniae (M. pneumoniae) (D2 group). Children with tracheomalacia held lower microbial diversity and accumulated Lactococcus (mean ± SD, 45.21%±5.07%, P value <0.05), Porphyromonas (0.12%±0.31%, P value <0.05). D1 and D2 group were enriched by Streptococcus (7.57%±11.61%, P value <0.01 when compared with D2 group) and Mycoplasma (0.67%±1.25%, P value <0.01) respectively. Bacterial correlation in C group was mainly intermediated by Pseudomonas and Arthrobacter. Whilst, D1 group harbored simplest microbial correlation in three groups, and D2 group held the most complicated network, involving enriched Staphylococcus (0.26%±0.71%), Massilia (0.81%±2.42%). This will be of significance for understanding pneumonia incidence and progression more comprehensively, and discerning between bacterial infection and carriage.

PMID: 27293852 [PubMed]

Update in lung cancer: epilogue to a modern review series.

Related Articles

Update in lung cancer: epilogue to a modern review series.

Respirology. 2016 May 30;

Authors: Fong KM, van Zandwijk N

PMID: 27242135 [PubMed - as supplied by publisher]

Hypoxia and tissue destruction in pulmonary TB.

Related Articles

Hypoxia and tissue destruction in pulmonary TB.

Thorax. 2016 May 31;

Authors: Belton M, Brilha S, Manavaki R, Mauri F, Nijran K, Hong YT, Patel NH, Dembek M, Tezera L, Green J, Moores R, Aigbirhio F, Al-Nahhas A, Fryer TD, Elkington PT, Friedland JS

Abstract
BACKGROUND: It is unknown whether lesions in human TB are hypoxic or whether this influences disease pathology. Human TB is characterised by extensive lung destruction driven by host matrix metalloproteinases (MMPs), particularly collagenases such as matrix metalloproteinase-1 (MMP-1).
METHODS: We investigated tissue hypoxia in five patients with PET imaging using the tracer [(18)F]-fluoromisonidazole ([(18)F]FMISO) and by immunohistochemistry. We studied the regulation of MMP secretion in primary human cell culture model systems in normoxia, hypoxia, chemical hypoxia and by small interfering RNA (siRNA) inhibition.
RESULTS: [(18)F]FMISO accumulated in regions of TB consolidation and around pulmonary cavities, demonstrating for the first time severe tissue hypoxia in man. Patlak analysis of dynamic PET data showed heterogeneous levels of hypoxia within and between patients. In Mycobacterium tuberculosis (M.tb)-infected human macrophages, hypoxia (1% pO2) upregulated MMP-1 gene expression 170-fold, driving secretion and caseinolytic activity. Dimethyloxalyl glycine (DMOG), a small molecule inhibitor which stabilises the transcription factor hypoxia-inducible factor (HIF)-1α, similarly upregulated MMP-1. Hypoxia did not affect mycobacterial replication. Hypoxia increased MMP-1 expression in primary respiratory epithelial cells via intercellular networks regulated by TB. HIF-1α and NF-κB regulated increased MMP-1 activity in hypoxia. Furthermore, M.tb infection drove HIF-1α accumulation even in normoxia. In human TB lung biopsies, epithelioid macrophages and multinucleate giant cells express HIF-1α. HIF-1α blockade, including by targeted siRNA, inhibited TB-driven MMP-1 gene expression and secretion.
CONCLUSIONS: Human TB lesions are severely hypoxic and M.tb drives HIF-1α accumulation, synergistically increasing collagenase activity which will lead to lung destruction and cavitation.

PMID: 27245780 [PubMed - as supplied by publisher]

Search